Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy
Lyu Shou-Peng1, 2, Yu Li1, †, Huang Jian-Wei1, 2, Lin Cheng-Tian3, Gao Qiang1, 2, Liu Jing1, 2, Liu Guo-Dong1, Zhao Lin1, Yuan Jie1, Chen Chuang-Tian4, Xu Zu-Yan4, Zhou Xing-Jiang1, 2, 5, ‡
National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Max-Planck-Institut f ür Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

 

† Corresponding author. E-mail: li.yu@iphy.ac.cn XJZhou@iphy.ac.cn

Project supported by the National Basic Research Program of China (Grant No. 2015CB921301), the National Natural Science Foundation of China (Grant Nos. 11574360, 11534007, and 11334010), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300).

Abstract

The detailed information of the electronic structure is the key to understanding the nature of charge density wave (CDW) order and its relationship with superconducting order in the microscopic level. In this paper, we present a high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) study on the three-dimensional (3D) hole-like Fermi surface around the Brillouin zone center in a prototypical quasi-one-dimensional CDW and superconducting system ZrTe3. Double Fermi surface sheets are clearly resolved for the 3D hole-like Fermi surface around the zone center. The 3D Fermi surface shows a pronounced shrinking with increasing temperature. In particular, the quasiparticle scattering rate along the 3D Fermi surface experiences an anomaly near the charge density wave transition temperature of ZrTe3 (∼63 K). The signature of electron–phonon coupling is observed with a dispersion kink at ∼20 meV; the strength of the electron–phonon coupling around the 3D Fermi surface is rather weak. These results indicate that the 3D Fermi surface is also closely connected to the charge-density-wave transition and suggest a more global impact on the entire electronic structure induced by the CDW phase transition in ZrTe3.

Reference
[1] Gabovich A M Voitenko A I Ekino T Li M S Szymczak H Pekala M 2010 Adv. Condens. Matter Phys. 2010 1
[2] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551
[3] He S He J Zhang W Zhao L Liu D Liu X Mou D Ou Y B Wang Q Y Li Z Wang L Peng Y Liu Y Chen C Yu L Liu G Dong X Zhang J Chen C Xu Z Chen X Ma X Xue Q Zhou X J 2013 Nat. Mater. 12 605
[4] Zhu X Ning W Li L Ling L Zhang R Zhang J Wang K Liu Y Pi L Ma Y Du H Tian M Sun Y Petrovic C Zhang Y 2016 Sci. Rep. 6 26974
[5] Cui S He L P Hong X C Zhu X D Petrovic C Li S Y 2016 Chin. Phys. 25 077403
[6] Denholme S J Yukawa A Tsumura K Nagao M Tamura R Watauchi S Tanaka I Takayanagi H Miyakawa N 2017 Sci. Rep. 7 45217
[7] Kidd T E Miller T Chou M Y Chiang T C 2002 Phys. Rev. Lett. 88 226402
[8] Kolekar S Bonilla M Ma Y Diaz H C Batzill M 2017 2D Mater. 5 015006
[9] Kwang-Hua C W 2012 Chem. Phys. 409 37
[10] Schmitt F Kirchmann P S Bovensiepen U Moore R G Rettig L Krenz M Chu J-H Ru N Perfetti L Lu D H Wolf M Fisher I R Shen Z X 2008 Science 321 1649
[11] Yamaya K Takayanagi S Tanda S 2012 Phys. Rev. 85 184513
[12] Yomo R Yamaya K Abliz M Hedo M Uwatoko Y 2005 Phys. Rev. 71 132508
[13] Tsuchiya S Matsubayashi K Yamaya K Takayanagi S Tanda S Uwatoko Y 2017 New J. Phys. 19 063004
[14] Yamaya K Yoneda M Yasuzuka S Okajima Y Tanda S 2002 J. Phys.: Condens. Matter. 14 10767
[15] Mirri C Dusza A Zhu X Lei H Ryu H Degiorgi L Petrovic C 2014 Phys. Rev. 89 035144
[16] Zhu X Lei H Petrovic C 2011 Phys. Rev. Lett. 106 246404
[17] Lei H Zhu X Petrovic C 2011 Europhys. Lett. 95 17011
[18] Yokoya T Kiss T Chainani A Shin S Yamaya K 2005 Phys. Rev. 71 140504
[19] Hoesch M Cui X Shimada K Battaglia C Fujimori S-i Berger H 2009 Phys. Rev. 80 075423
[20] Eaglesham D J Steeds J W Wilson J A 1984 J. Phys. C: Solid State Phys. 17 697
[21] Gleason S L Gim Y Byrum T Kogar A Abbamonte P Fradkin E MacDougall G J Van Harlingen D J Zhu X Petrovic C Cooper S L 2015 Phys. Rev. 91 155124
[22] Hoesch M Bosak A Chernyshov D Berger H Krisch M 2009 Phys. Rev. Lett. 102 086402
[23] Hu Y Zheng F Ren X Feng J Li Y 2015 Phys. Rev. 91 144502
[24] Zhou X J He S L Liu G D Zhao L Yu L Zhang W T 2018 Rep. Prog. Phys. 81 062101
[25] Zhu X Lv B Wei F Xue Y Lorenz B Deng L Sun Y Chu C W 2013 Phys. Rev. 87 024508
[26] Stowe K Wagner F R 1998 J. Solid State Chem. 138 160
[27] Felser C Finckh E W Kleinke H Rocker F Tremel W 1998 J. Mater. Chem. 8 1787
[28] Zhang Y Wang C Yu L Liu G Liang A Huang J Nie S Sun X Zhang Y Shen B Liu J Weng H Zhao L Chen G Jia X Hu C Ding Y Zhao W Gao Q Li C He S Zhao L Zhang F Zhang S Yang F Wang Z Peng Q Dai X Fang Z Xu Z Chen C Zhou X J 2017 Nat. Commun. 8 15512
[29] Seshadri R Suard E Felser C Finckh E W Maignanc A Tremel W 1998 J. Mater. Chem. 8 2869
[30] Wu Y Jo N H Ochi M Huang L Mou D Budko S L Canfield P C Trivedi N Arita R Kaminski A 2015 Phys. Rev. Lett. 115 166602